Статистические методы, примеры их применения для принятия решенияСтраница 1
Первый тип задач
Допустим, что школьному психологу нужно представить краткую информацию о развитии психомоторных функций учащихся шестых классов. В этих классах обучается 50 учеников. В процессе выполнения своей программы психолог провел диагностическое изучение двигательной скорости, применив ранее описанную методику (описание дано на первой странице данного раздела).
Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции — ее центральной тенденции, величины, показывающей размах колебания, в пределах которого находятся данные отдельных учеников, и то, как распределяются эти данные. Какими методами вести обработку, зависит от того, в какой статистической шкале измерены значения исследуемого признака. Визуальное ознакомление с полученными данными показывает, что возможно вычисление среднего арифметического
, выражающего центральную тенденцию, и среднеквадратического отклонения
, показывающего размах и особенности варьирования экспериментальных результатов.
Нельзя ограничиться вычислением только среднего арифметического, так как оно не дает полных сведений об изучаемой выборке.
Вот пример.
В одном купе вагона поместилась бабушка 60 лет с четырьмя внуками: один — 4 лет, двое — по 5 лет и один — 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5= 16.
В другом купе расположилась компания молодежи: двое — 15-летних, один — 16-летний и двое — 17-летних. Средний возраст пассажиров этого купе также равен 80/5= 16. Таким образом, по средним арифметическим пассажиры этих купе как бы и не отличаются. Но если обратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьируется в пределах 56 единиц, а во втором — в пределах 2.
Для вычисления среднего арифметического применяется формула:
" х = ∑ х / n
а для среднеквадратического отклонения формула:
σ = √∑ (х - " х )2 / n
В этих формулах "х означает среднее арифметическое, х — каждую величину изучаемого ряда, ∑ означает сумму; σ означает среднеквадратическое отклонение; буквой n обозначают число членов изучаемого ряда.
Ниже представлен весь ход его обработки.
В опытах участвовало 50 испытуемых. Каждый из них выполнил 25 проб, по 1 мин каждая. Вычислено среднее для каждого испытуемого. Полученный ряд упорядочен, и все индивидуальные результаты представлены в последовательности от меньшего к большему.
85-93-93-99-101-105-109-110-111-115-115-116-116-117-117-117-118-119-121-121-122-124-124-124-124-125-125-125-127-127-127-127-127-128-130-131-132-132-133-134-134-135-138-138-140-143-144-146-150-158.
Для удобства дальнейшей обработки эти первичные данные соединены в группы. Благодаря группировке отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упрощается и вычисление среднего арифметического и среднеквадратического отклонения. Этим компенсируется количественное искажение информации, неизбежное при вычислениях на сгруппированных данных.
При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, например порядка 8-12. Желательно, чтобы при группировании начальная величина — при соблюдении последовательности от меньшей величины к большей — была меньше самой меньшей величины ряда, а самая большая — больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно начать с меньшей величины, а поскольку ряд завершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных соображений можно выбрать групповой интервал в 9 единиц и произвести разбивку ряда на группы, начав с 83. Тогда последняя группа будет завершаться величиной, превышающей значение последней величины ряда (т. е. 159). Число групп будет равно 9. В табл. 1 представлены группы в их последовательности и все другие величины для вычисления среднего арифметического и среднеквадратического отклонения. Таблица состоит из 8 столбцов.
1-й столбец — группы, полученные после разбиения изучаемого ряда.
Теоретический анализ понятия
восприятия времени. Понятие
восприятия времени
Знания об окружающем мире человек получает посредством двух взаимосвязанных процессов – ощущения и восприятия. Ощущения, получаемые с помощью различных анализаторов, предоставляют знания о конкретных, отдельных качествах объекта, восприятие же позволяет собрать целостный законченный образ, при этом не сводимый к сумме входящих в него ощ ...
Общение как восприятие.
в процессе общения должно присутствовать взаимопонимание между участниками этого процесса. понимание целей, мотивов, установок партнера по взаимодействию, или как не только понимание, но и принятие, разделение этих целей, мотивов, установок. большое значение имеет то, как воспринимается партнер по общению, иными словами, процесс восприя ...
Конфликт между личностью и группой.
Между отдельной личностью и группой может возникнуть конфликт, если эта личность займет позицию, отличающуюся от позиций группы. Например, обсуждая на собрании пути увеличения объема продаж, большинство будет считать, что этого можно добиться путем снижения цены. А кто-то один будет убежден, что такая тактика приведёт к уменьшению п ...