Статистические методы, примеры их применения для принятия решения
Страница 3

Материалы по психологии » Статистика в обработке материалов психологических исследований » Статистические методы, примеры их применения для принятия решения

n = 50 ; ∑f * х = 6150 ; ∑f *(х - " х )2 = 10368

6-й столбец показывает построчные разности между значениями х 2-го столбца и средним арифметическим "х.

7-й столбец — квадрат этих разностей.

8-й столбец показывает построчные произведения значений 4-го и 7-го столбцов. Суммирование величин этого столбца дает итог, не­обходимый для вычисления среднеквадратического отклонения.

Включение буквы f, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего ариф­метического и среднеквадратического отклонения. Поэтому формулы

" х = ∑х/ n = ∑f *х/ n

Как и формулы вполне тождественны.

σ = √∑ (х - " х )2 / n = √∑f * (х - " х )2 / n

Остается показать, как вычисляются по формулам среднее арифме­тическое и среднеквадратическое отклонение. Обратимся к величи­нам, полученным в табл. 1:

" х = 6150/50 = 123

При составлении табл. 1 это число было заранее вычислено, без него нельзя было бы получить числовые значения 6, 7 и 8-го столбцов таблицы.

σ = √10368/50 = √207,3 = 14,4

При обработке изучаемого ряда оказалось возможным применение параметрического метода; визуально можно заметить, что распределе­ние численностей приближается к нормальному.

Нормальное распределение обладает некоторыми весьма полезны­ми для исследователя свойствами. Так, в границах "х ± σ находится примерно 68 % всего ряда или всей выборки. В границах "х ± 2σ нахо­дится примерно 95 %, а в границах "х ± 3σ - 99,7 % выборки. В практи­ке исследований часто берут границы "х ± 2/3σ. В этих границах при нормальном распределении будут находиться 50 % выборки; распре­деление это симметрично, поэтому 25 % окажутся ниже, а 25 % выше гра­ниц "х ± 2/3σ. Все эти расчеты не требуют никакой дополнительной проверки при условии, что изучаемый ряд имеет нормальное распре­деление, а число элементов в нем велико, порядка нескольких сотен или тысяч.

Для рассматриваемого примера необходимо также вычислить ко­эффициент вариации по формуле:

V = σ/ "х ·100 %.

В примере, который был рассмотрен выше,

V = 14,4/123 ·100% = 11,7%.

Выполнив все эти вычисления, психолог может представить инфор­мацию об изучении двигательной скорости с помощью примененной методики в шестых классах. Согласно результатам изучения в шестых классах, получены:

· среднее арифметическое — 123;

· среднеквадратическое отклонение — 14,4;

· коэффициент вариации — 11,7 %.

Если значения изучаемого признака измерены в порядковой шкале, то в качестве меры центральной тенденции выступает медиана, а ха­рактеристикой диапазона варьирования выступает среднее кварталь­ное отклонение.

Вот пример.

После проведения диагностических испытаний уровня умственного развития учеников шестого класса все полученные данные были упоря­дочены, т. е. расположены в последовательности от меньшей величины к большей. Испытания проходили 18 учащихся. Буквами обозначены уча­щиеся, числами — полученные ими баллы по тесту, столбцы под буква­ми R — ранги (табл. 2).

Процедура ранжирования состоит в следующем. Все числа ряда в их последовательности получают по своим порядковым местам присва­иваемые им ранги. Если какие-нибудь числа повторяются, то всем по­вторяющимся числам присваивается один и тот же ранг — средний из общей суммы занятых этими числами мест. Так, числу «28» в изучаемом ряду присвоен ранг «2». Затем следуют трижды повторяющиеся числа «39». На них приходятся занятые ими ранговые места «3», «4», «5». По­этому этим числам присваивается один и тот же средний ранг, в данном случае — «4». Поскольку места до 5 включительно заняты, то следующее число получает ранг «6» и т. д.

Таблица 2

Ранжирование результатов

Учащиеся

Баллы по тесту

Ранг (R)

Учащиеся

Баллы по тесту

Ранг (R)

А

25

1

К

68

10

Б

28

2

Л

69

11,5

В

39

4

м

69

11,5

Г

39

4

н

70

14,5

д

39

4

О

70

14,5

Е

45

6

п

70

14,5

Ж

50

7

р

70

14,5

3

52

8,5

с

74

17,5

И

52

8,5

т

74

17,5

Страницы: 1 2 3 4


Воля как характеристика сознания
Главной чертой человека как субъекта, отличающей его от остальных живых существ, является сознание. Сознание - это высшая форма психического развития, присущая только человеку. Оно определяет возможность познания объективной реальности, формирования целенаправленного поведения и, как следствие, преобразования окружающего мира. Произвол ...

Уважительное отношение к оппоненту
Остановимся более подробно на одном очень важном требовании культуры спора - уважительном отношении оппонентов друг к другу. В книге "Спор. О теории и практике спора" С.И.Поварнин писал: "Важное условие настоящего, хорошего и честного спора (для убеждения он или для победы и т.д. - все равно) - уважение к убеждениям и ве ...

Межгрупповой конфликт.
Организации состоят из множества формальных и неформальных групп. Даже в са­мых лучших организациях между такими группами могут возникнуть конфликты. Нефор­мальные группы, которые считают, что руководитель относится к ним несправед­ливо, могут крепче сплотиться и попытаться «рассчитаться» с ним снижением производитель­ности. Яркий прим ...